Once More, With Feeling: Draws and Drawbacks of Sentiment Analysis

Our Project

Opinions tend to reflect feelings as well as beliefs. Sentiment analysis, also known as opinion mining, is a technique used today for generating data on trends in people’s attitudes and feelings on anything from products and services to current events. This data is created by calculating sentiment scores using what people have said or written. Despite the efforts of computer scientists, semanticists and statisticians to figure out ways to program computers to identify the feelings expressed in words, the technique of sentiment analysis is still at best only reliable as a starting point for closer readings.

The results of sentiment analysis can quickly become misleading if presented without any reference to the actual passages of text that were analyzed. Nevertheless, it is helpful as a technique for delving into large corpora and collections of unstructured texts to capture trends and shifts in sentiment intensity.

For a final collaborative project of the academic year 2015-2016, our team at the Digital Projects Studio decided to take on the challenge of visualizing the intensity of emotions and opinions expressed during the 2016 primary election debates. (Click here to see the final product). Our dataset was a set of complete transcripts for twelve Republican and eight Democratic debates. To process the data, we filtered out interventions of moderators and interjections from the audience, ran the statements of each candidate through a sentiment analyzer from Python’s NLTK (Natural Language ToolKit) library, and indexed the statements of each candidate by debate number, numeric sentiment score, and sentiment category.

Continue reading “Once More, With Feeling: Draws and Drawbacks of Sentiment Analysis”

Customizing Applications in Django

This post is a follow-up to the introduction to the Field Notebook and the demo notebook, ‘Monumental Gifts’. I will go over how to install the app and start customizing your own web-based Field Notebook. This post will focus on how to start tailoring the models and appearance of your Notebook to suit your needs for your research. If you are interested (or discover later that you are interested) in building your own original application from scratch, I recommend working through the Beginner’s Tutorial on Django’s website. In fact, even if you don’t plan on building your own application, I still recommend the tutorial. You’ll have better understanding of how to modify and use your Field Notebook if you become familiar with how Django works as a framework.

Installing the app

Continue reading “Customizing Applications in Django”

Introduction to Network Visualization: Part 2 (Cytoscape)

This post is the second half of a two-part beginner’s introduction to network visualization. The first post outlined preparing a dataset for upload into Gephi and covered how to get started with the styling options and layouts available in Gephi. In this half of the tutorial, we’ll do the same for Cytoscape.

Continue reading “Introduction to Network Visualization: Part 2 (Cytoscape)”

Introduction to Network Visualization: Part 1 (Gephi)

This introductory tutorial to Network Visualization is the first of a two-part series. This first post will provide an introduction to generating network visualizations with Gephi. The second post will be an introduction to Cytoscape. Along the way, we will contrast the interfaces and the layouts available for each platform.

Continue reading “Introduction to Network Visualization: Part 1 (Gephi)”